LaDissertation.com - Dissertations, fiches de lectures, exemples du BAC
Recherche

Data Marketing

Résumé : Data Marketing. Recherche parmi 300 000+ dissertations

Par   •  20 Novembre 2020  •  Résumé  •  296 Mots (2 Pages)  •  356 Vues

Page 1 sur 2

DATA MARKETING

Introduction to Marketing Research

Marketing research is the systematic and objective:

  • Identification
  • Collection
  • Analysis
  • Dissemination
  • Use of information

…for the purpose of improving decision making related to the :

  • Identification
  • Solution of problems and opportunities in marketing

Marketing and statistics duet

Objective: processing data and analyzing them toward marketing concepts

Thanks to data-marketing, marketer can nowadays:

  • Personalizes customers interactions
  • Understands consumers and customers
  • Segments customers
  • More focuses marketing campaigns
  • Facilitates product modifications

SESSION 1: Introduction and course’s presentation

SESSION 2: How to do a dataset and manage it with SPSS

SESSION 3: How can I do a simple marketing data analysis with SPSS

SESSION 4: How can I do a clustering and predictive analysis with a hierarchical model and regression on SPSS? (distance lesson)

SESSION 5: Final exam and Presentation session

Assessment:

  • Individual mark (70%): final exam 50% + involvement 20%
  • Group marks (30%)

INTRODUCTION

Big data and marketing are fatally linked

In french big data is named by: mégadonnées or données massives

Data is essential for marketing research. This allows us to study feelings, opinions, attitudes or behaviours of consumers (or customers).

Concept of 5 V’s big data leads digital marketing:

  • Volume
  • Velocity
  • Variety
  • Variability
  • Value
  • (Veracity sometimes)

It’s used for making prediction or for clustering:

  • Prediction with regression models
  • Clustering (classification) with hierarchical model, factor analysis... 🡪 market segmentation

Which variables we use in marketing?

  • Feelings
  • Knowledge
  • Attitudes
  • Behaviors
  • Sociodemographic insights

Which measures can take variables?

  • Qualitative
  • Nominale (gender) 🡪 nombre qui représente une catégorie
  • Ordinale (satisfaction) 🡪 ordre hiérarchique entre
  • Quantitative
  • Continue (weight)
  • Discrète (number of people at home 🡪 nombre indivisible)

Qualitative nominale : signe astrologique, couleur

...

Télécharger au format  txt (2.4 Kb)   pdf (60.7 Kb)   docx (9.2 Kb)  
Voir 1 page de plus »
Uniquement disponible sur LaDissertation.com