Les arithmétiques
Analyse sectorielle : Les arithmétiques. Recherche parmi 300 000+ dissertationsPar dissertation • 13 Mai 2014 • Analyse sectorielle • 1 727 Mots (7 Pages) • 795 Vues
Arithmétique
Un article de Wikipédia, l'encyclopédie libre.
Aller à : navigation, rechercher Pour le film de 1952, voir Arithmétique (documentaire).
Illustration d’une décomposition arborescente d’un calcul arithmétique faisant intervenir l’addition (symbole +), la soustraction (symbole -), la multiplication (symbole *), le quotient (symbole /) et le reste (symbole %) de la division euclidienne.L’arithmétique est une branche des mathématiques qui comprend la partie de la théorie des nombres qui utilise des méthodes de la géométrie algébrique et de la théorie des groupes[réf. nécessaire]. On l'appelle plus généralement la « science des nombres ». Son étymologie provient du mot grec « ἀριθμός » qui signifie « nombre ».
Autrefois, l'arithmétique se limitait à l'étude des propriétés des entiers naturels, des entiers relatifs, et des nombres rationnels (sous forme de fractions), et aux propriétés des opérations sur ces nombres.
Les opérations arithmétiques traditionnelles sont l'addition, la division, la multiplication, et la soustraction.
Cette discipline fut ensuite élargie par l'inclusion de l'étude d'autres nombres comme les réels (sous forme de développement décimal illimité), ou même de concepts plus avancés, comme l'exponentiation ou la racine carrée.
Sommaire [masquer]
1 Histoire
2 Différentes arithmétiques
2.1 Arithmétique élémentaire
2.2 Arithmétique modulaire
2.3 Théorie algébrique des nombres
2.4 Arithmétique des polynômes
3 Ensembles utilisés en arithmétique
4 Propriétés
4.1 Nombres premiers
4.2 Nombres pairs et impairs
5 Bibliographie
5.1 En mathématiques
5.2 En philosophie
6 Voir aussi
Histoire[modifier | modifier le code]Dans l'école pythagoricienne (Pythagore de Samos), à la deuxième moitié du VIe siècle avant J.-C., l'arithmétique était, avec la géométrie, l'astronomie et la musique, une des quatre sciences quantitatives ou mathématiques (Mathemata). Celles-ci furent regroupées au sein des sept arts libéraux par Martianus Capella (Ve siècle), et plus précisément désignées sous le nom de quadrivium par Boèce. Les trois autres disciplines étaient littéraires (grammaire, rhétorique, dialectique) et firent l'objet des travaux de Cassiodore et, plus tard, Alcuin qui leur donna le nom de trivium.
Différentes arithmétiques[modifier | modifier le code]Arithmétique élémentaire[modifier | modifier le code]Article détaillé : Arithmétique élémentaire.L'expression arithmétique élémentaire désigne parfois la forme la plus basique des mathématiques, apprise à l’école élémentaire. Il s’agit essentiellement de l’étude des nombres, et des opérations élémentaires (soustraction, addition, division, multiplication).
Ce terme désigne aussi les rudiments des techniques de l'arithmétique. Les outils utilisés sont la division euclidienne, le lemme d'Euclide, le théorème de Bachet-Bézout ou encore le théorème fondamental de l'arithmétique. Il permet de démontrer des théorèmes comme celui de Wilson ou encore le petit théorème de Fermat.
Cette deuxième acception du terme est traitée dans l'article détaillé.
Arithmétique modulaire[modifier | modifier le code]Article détaillé : Arithmétique modulaire.Carl Friedrich Gauss (1777 - 1855) étudie l'ensemble des congruences sur les entiers, c'est-à-dire celui composé des restes de la division euclidienne par un nombre entier donné. Cet ensemble est naturellement muni d'une addition et d'une multiplication.
L'étude de cette structure porte le nom d'arithmétique modulaire. Elle permet de généraliser les résultats de l'arithmétique élémentaire. Le théorème d'Euler, correspondant à un résultat plus fort que celui du petit théorème de Fermat, illustre une généralisation.
L'arithmétique modulaire est utilisé en cryptologie ou pour la construction de codes correcteurs en informatique.
Théorie algébrique des nombres[modifier | modifier le code]Article détaillé : Théorie algébrique des nombres.De nombreuses questions ne trouvent pas de réponse, même avec les techniques de l'arithmétique modulaire. Des exemples proviennent d'équations diophantiennes, c'est-à-dire d'équations dont les coefficients sont entiers et dont les solutions recherchées sont entières. Une méthode consiste à élargir l'ensemble des entiers à une nouvelle structure qualifiée d'anneau d'entiers algébriques, comme par exemple celui des entiers de Gauss.
L'étude de ces structures, plus générales que celles de l'arithmétique modulaire qui se limite aux anneaux euclidiens, constitue le premier chapitre de la théorie algébrique des nombres.
Arithmétique des polynômes[modifier | modifier le code]Article détaillé : Arithmétique des polynômes.L'étude de l'arithmétique, au sens des nombres entiers, suppose d'établir des théorèmes. Ces théorèmes se démontrent à l'aide de techniques qui ne se limitent pas aux nombres entiers. Il est possible de faire usage de la même démarche sur d'autres structures, comme par exemple celle des polynômes. À travers l'étude des polynômes cyclotomiques, Gauss parvient à trouver un nouveau polygone régulier constructible à la règle et au compas, de 17 côtés.
Sa démarche est de nature arithmétique, pour cette raison, on parle d'arithmétique des polynômes.
Ensembles utilisés en arithmétique[modifier | modifier le code]La totalité des nombres ont été regroupés dans des ensembles. Les plus connus sont :
: l'ensemble des entiers naturels ().
: l'ensemble
...