LaDissertation.com - Dissertations, fiches de lectures, exemples du BAC
Recherche

Outliers Analysis

Cours : Outliers Analysis. Recherche parmi 300 000+ dissertations

Par   •  25 Janvier 2016  •  Cours  •  478 Mots (2 Pages)  •  695 Vues

Page 1 sur 2

Outliers Analysis

In a multivariate analysis such as Structural equation modeling, the analysis of the outliers have a bigg importance. In fact, univariate outlier is a data point that consists of an extreme value on one variable.  Where multivariate outlier is a combination of unusual scores on at least two variables.  Both types of outliers can influence the outcome of statistical analyses. 

For the analysis of the univariate outliers, was detected using a comparison between 5% trimmed mean, and the mean of the population. In fact, the 5% trimmed mean consist on calculating the mean of the population without taking into consideration the 5% extreme observations. we compare this value to the mean of all the individuals in case there is a significant difference between the two value we suspect the existence of univariate outliers.

In this study and for the three groups (teachers, Students and parents) the difference between the 5% trimmed mean and the mean for the Likert scale variables was between 0.01 and 0.17. This very small difference between the two mean indicate that there is now univariate outlier answer in the data collected. Besides, the Boxplots of all the variables confirms this result (see appendix).

For the analysis of the multivariate outliers, the Mohalanobis distance provides the distance between the each observation and the centroid of all the observations, if this distance is superior to its critical value(  , were p the degree of freedom equals to the number of variables ) the observation is considered as a multivariate outlier. [pic 1]

In our case, and after calculating the Mohalanobis distances, 103 observations were considered as a multivariate outlier, 26 from the student group, 4 from teacher’s group, and 73 from the parents group.  

Parametric Data Assumptions

Structural equation modeling (SEM) has been theoretically and empirically demonstrated to be powerful in disentangling complex causal linkages among variables in social studies, and has become more and more popular in studying the relationships between travel behavior and the built environment. As with other statistical methods, assuming conceptual plausibility, the inferences of causality in the SEM are based on hypothesis tests on the model and the parameter estimates. If the data meet all the assumptions required by an estimation method, the results are assumed to be trustworthy (Univariate normality, multivariate normality, Homoscedasticity, linearity, Multicollinearity, Validity and Reliability).

Normality assumptions:

 

Table 1: Kolmogorov-Smirnov and Shapiro-wilk’s test

The figures below illustrate the distributions of the variables after the transformation. In fact, we can remark that the reflected logarithm transformation did not show an improvement in the normality of the variables. In addition, referring to Kolmogorov-Smirnov and Shapiro-wilk’s statistics we can reject at 95% of confidence the normality of the transformed variables. Using the Reflected Square transformation the same fact was concluded.

 

Min

Max

Mean

SD

Skewness

Kurtosis

Value

SE

Z Skewness

Statistic

Std. Error

Z kurtosis

Q01_PU_01

1

7

4,61

2,138

-,503

,069

-7,270

-1,139

0,138

-8,220

Q02_PU_02

1

7

4,11

2,320

-,160

,069

-2,315

-1,521

0,138

-10,983

Q03_PU_03

1

7

4,16

2,133

-,201

,069

-2,899

-1,325

0,138

-9,563

Q04_PU_04

1

7

4,84

2,022

-,680

,069

-9,813

-,759

0,138

-5,481

Q05_PU_05

1

7

4,62

2,083

-,500

,069

-7,226

-1,037

0,138

-7,490

Q06_PU_06

1

7

4,19

2,239

-,209

,069

-3,017

-1,414

0,138

-10,212

Q07_PEOU_01

1

7

5,00

1,975

-,766

,069

-11,059

-,627

0,138

-4,529

Q08_PEOU_02

1

7

4,69

2,166

-,541

,069

-7,811

-1,145

0,138

-8,269

Q09_PEOU_03

1

7

4,50

2,263

-,412

,069

-5,954

-1,354

0,138

-9,777

Q10_PEOU_04

1

7

4,25

2,181

-,236

,069

-3,404

-1,372

0,138

-9,908

Q11_PEC_01

1

7

4,38

2,072

-,356

,069

-5,134

-1,160

0,138

-8,378

Q12_PEC_02

1

7

4,03

2,064

-,166

,069

-2,396

-1,272

0,138

-9,180

Q13_PEC_03

1

7

4,82

1,961

-,629

,069

-9,083

-,763

0,138

-5,510

Q14_PEC_04

1

7

3,82

1,828

,006

,069

0,090

-,920

0,138

-6,646

Q15_PEC_05

1

7

4,19

1,986

-,256

,069

-3,699

-1,135

0,138

-8,191

Q16_PEC_06

1

7

4,10

2,025

-,153

,069

-2,202

-1,229

0,138

-8,872

Q17_PEC_07

1

7

4,11

1,980

-,182

,069

-2,623

-1,149

0,138

-8,294

Q18_ENJ_01

1

7

3,62

2,169

,127

,069

1,836

-1,399

0,138

-10,099

Q19_ENJ_02

1

7

3,61

2,062

,134

,069

1,934

-1,264

0,138

-9,126

Q20_ENJ_03

1

7

3,40

2,094

,264

,069

3,813

-1,285

0,138

-9,276

Q21_OU_01

1

7

3,77

2,125

,047

,069

0,678

-1,370

0,138

-9,889

Q22_OU_02

1

7

3,97

2,011

-,064

,069

-0,919

-1,251

0,138

-9,035

Q23_SN_01

1

7

3,98

1,915

-,127

,069

-1,829

-1,021

0,138

-7,369

Q24_SN_02

1

7

3,97

1,934

-,116

,069

-1,677

-1,029

0,138

-7,430

Q25_SN_03

1

7

4,42

2,064

-,416

,069

-6,013

-1,076

0,138

-7,768

Q26_SN_04

1

7

4,99

1,901

-,714

,069

-10,311

-,531

0,138

-3,831

Q27_VOL_01

1

7

2,71

2,038

,833

,069

12,031

-,692

0,138

-4,994

 

 

 

 

 

 

 

 

 

 

 

Rev_V18_Q14_PEC_04

1

7

4,18

1,828

-,006

,069

-0,090

-,920

0,138

-6,646

Rev_V58_Q54_CANX_02

1

7

5,93

1,611

-1,401

,069

-20,233

,811

0,138

5,855

Rev_V59_Q55_CANX_03

1

7

5,90

1,643

-1,450

,069

-20,934

1,026

0,138

7,409

Rev_V60_Q56_CANX_04

1

7

5,99

1,601

-1,607

,069

-23,204

1,624

0,138

11,724

Rev_V117_Q96_TSP_USE

1

6

2,94

1,692

,566

,069

8,176

-,917

0,138

-6,618

Valid N (listwise)

 

 

 

 

 

 

 

 

 

 

...

Télécharger au format  txt (6 Kb)   pdf (206.3 Kb)   docx (12.4 Kb)  
Voir 1 page de plus »
Uniquement disponible sur LaDissertation.com