Code Simpson pour calculer une diffraction
Guide pratique : Code Simpson pour calculer une diffraction. Recherche parmi 300 000+ dissertationsPar ynnnnn • 29 Janvier 2023 • Guide pratique • 1 524 Mots (7 Pages) • 467 Vues
close all;
clc;
% op_rs_point_source_xy.m
% Circular apertures - irradiance in XY observation plane
% POINT SOURCE illumination of aperture
% Numerical integration of the Rayleigh-Sommerfeld diffraction integral of
% the first kind - Simpson's 1/3 rule
% Integration performed by dividing the aperture into rings
% with increasing data points as radius increases
% S.I. units used unless otherwise stated
% SYMBOLS: irradiance = intensity = energy density u [W.m^-2]
% energy aperture --> observation screen U [W or J/s]
% Calculation of energy enclosed in circles
% Uses functions
% simpson1d.m fn_distancePQ.m
% 20 nov 2014
% Ian Cooper School of Physics University of Sydney
% cooper@physics.usyd.edu.au
% http://www.physics.usyd.edu.au/teach_res/mp/optics/optics_home.htm
tic
% =======================================================================
% INPUTS
% =======================================================================
n1 = 60; % Aperture: grid points for inner ring
n2 = 120; % Aperture: grid points for outer ring
nR = 101; % Aperture: number of rings must be ODD
nP = 121; % Screen (Observation plane XY): must be odd
wL = 632.8e-9; % wavelength [m]
a = 10*wL; % radius of circular aperture [m]
% Source
xS = 0*wL; yS = 0*wL;
zS = -50*wL;
%zS = -1;
ES = 1;
% Observation Space [m]
yPmin = -55*wL;
yPmax = 55*wL;
xPmin = -55*wL;
xPmax = 55*wL;
zP = 100 * wL;
% % Default values
% n1 = 60; % Aperture: grid points for inner ring
% n2 = 120; % Aperture: grid points for outer ring
% nR = 101; % Aperture: number of rings must be ODD
% nP = 121; % Screen (Observation plane XY): must be odd
% wL = 632.8e-9; % wavelength [m]
% a = 10*wL; % radius of circular aperture [m]
%
% % Source
% xS = 0*wL; yS = 0*wL;
% zS = -50*wL;
% %zS = -1;
% ES = 1;
%
% % Observation Space [m]
% yPmin = -55*wL;
% yPmax = 55*wL;
% xPmin = -55*wL;
% xPmax = 55*wL;
% zP = 100 * wL;
% ========================================================================
% SETUP
% ========================================================================
cL = 2.99792458e8; % speed of light
eps0 = 8.854187e-12; % permittivity of free space
nRI = 1; % refractive index
k = 2*pi/wL; % propagation constant [rad/s]
ik = 1i*k; % j k
d_RL = 4*a^2/wL; % Rayleigh distance
% Aperture Space -------------------------------------------------------
zQ = 0;
A = zeros(nR,1); % intgeral for each ring in aperture space
n = zeros(nR,1); % number of points for ring in aperture space
% Ring structure
% radius of ring r [m] no. of data points around a ring n
% Greater the circumference of a ring --> more grid points
% Width of each ring dr
% Total no. grid points for Aperture nQ
rMax = a;
rMin = eps;
r = linspace(rMin, rMax, nR);
dr = r(2)-r(1);
m = (n2-n1) / (nR-1);
b = n2 - m * nR;
for c = 1 : nR
n(c) = 2*round(0.5*(m * c + b))+1;
end
nQ = sum(n);
% Observation Space -----------------------------------------------------
yP = linspace(yPmin,yPmax,nP);
dyP = yP(2)-yP(1);
...